

Envisat GDR Quality Assessment Report

Cycle 060

16-07-2007 / 20-08-2007

D 11		
Prepared by :	Y. Faugere, CLS	
	N. Granier, CLS	
	J. Dorandeu, CLS	
Accepted by :	J. Dorandeu, CLS	
Approved by :	N. Picot, CNES	

SALP-RP-P2-EX-21121-CLS060 Edition 01.0, October 2007

1 Introduction. Document overview

The purpose of this document is to report the major features of the data quality from the ocean Envisat mission. The document is associated with data dissemination on a cycle by cycle basis.

The objectives of this document are :

To provide a data quality assessment To provide users with necessary information for data processing To report any change likely to impact data quality at any level, from instrument status to software configuration To present the major useful results for the current cycle

It is divided into the following topics:

General quality assessment and cycle overview CALVAL main results Long term performance monitoring Particular investigations

2 Cycle overview

2.1 Data and software version

This cycle has been produced with the IPF processing chain V5.06 and the CMA Reference Software CMA/9.0_03.

The content of this science software version is described in a document available on the ESA PCS web site ([2]). The main impacts of these evolutions on the SSH are described in section Impact of CMA version 7.1 for the SSH calculation (page 4).

2.2 Parameters

The parameters used to compute the sea surface height (SSH) for Envisat are:

- Ku range (ocean retracking)
- POE orbit
- Dual frequency ionospheric correction
- MWR derived wet troposphere correction
- ECMWF dry tropospheric correction
- Non parametric sea state bias
- MOG2D
- Total geocentric GOT00 ocean tide height
- Geocentric pole tide height
- Solid earth tide height

2.3 Warnings and recommendations

-Passes 1 to 1002 are impacted by the USO anomaly. This quality assessment has been performed using the USO correction provided by ESA. Users are strongly advised not to use the range parameter in Ku and S Band without this correction (see section 5).

- 7 passes are missing due to incident RA2 (see section 3.1).

- 1 pass (920) is missing due to either to LRAC_PDHSs data generation, level1 problems or ingestion pbs on F-PAc side

(see section 3.1).

- 85 passes have no radiometer correction (see section 3.3).

2.4 Platform and instrument events

Orbit Inclination Maneuver $(2007/07/17\ 04:41:26\ to\ 2007/07/17\ 04:43:42,9)$

2.5 Cycle quality and performances

Good general results are obtained for this cycle of data.

The crossover standard deviation is 6.95 cm rms when using a selection to remove shallow waters (1000 m), areas of high ocean variability and high latitudes (> |50| deg). The standard deviation of Sea Level Anomalies (SLA) relative to the CLS01V1 Mean Sea Surface is 9.9 cm. When using a selection to remove shallow waters (1000 m), areas of high ocean variability and high latitudes

ENVISAT GDR Quality Assessment Report **Cycle 060** 16-07-2007 20-08-2007 SALP-RP-P2-EX-21072-CLS060 (> |50| deg) it lowers to 8.8 cm .

Detailed CALVAL results are presented in section 3.

2.6 Impact of product version "b" (CMA version 7.1) for the SSH calculation

The evolutions having a direct and strong impact on the SSH estimation are described hereafter:

2.6.1 Usage of actual USO clock period

Within the IPF version 5.02, the actual value of Ultra Stable Oscillator clock period is used within the L1b processing instead of the nominal one as it was used in previous IPF versions. This evolution implies a +2.5 cm jump on the Envisat SSH between cycle 40 and 41. To avoid this jump, and correct for the USO drift, users are advised to apply the correction provided by ESA on cycles 9 to 40 ([3]).

2.6.2 Improvement of the SSB correction

The Sea-State bias table has been recomputed (Labroue, 2005 [4])) accounting for the impact of the new orbit and the new geophysical corrections (MOG2D, GOT00 ocean tide correction with the S2 component corrected once only, new wind speed algorithm from Abdalla, 2006). The new SSB correction is shifted in average by +2.0 cm in comparison with the previous one.

2.6.3 New POE orbit solution

New standards are used for the computation of the Envisat Precise Orbit Estimation. One of the main evolutions is the use of the GRACE gravity model EIGEN_CG03C. This new model implies a strong reduction of the geographically correlated radial orbit errors: the systematic differences between ascending and descending passes which were locally higher than 4 cm in South West Pacific and South Atlantic are almost fully removed.

2.6.4 MOG2D correction

In order to take into account the dynamical effects and wind forcing, a new correction is computed from the MOG2D (Carrere and Lyard, 2003) barotropic model forced by pressure (without S1 and S2 constituents) and wind. The use of such a correction in the SSH strongly improves the performances.